Minimization of the zeroth Neumann eigenvalues with integrable potentials

نویسنده

  • Meirong Zhang
چکیده

For an integrable potential q on the unit interval, let λ0(q) be the zeroth Neumann eigenvalue of the Sturm–Liouville operator with the potential q. In this paper we will solve the minimization problem L̃1(r) = infq λ0(q), where potentials q have mean value zero and L1 norm r . The final result is L̃1(r)=−r/4. The approach is a combination of variational method and limiting process, with the help of continuity results of solutions and eigenvalues of linear equations in potentials and in measures with weak topologies. These extremal values can yield optimal estimates on the zeroth Neumann eigenvalues. © 2012 Elsevier Masson SAS. All rights reserved. Résumé Soit λ0(q) la zéro-ème valeur propre de Neumann de l’opérateur de Sturm–Liouville pour un potentiel intégrable q de l’intervalle [0,1]. Dans cet article nous résolvons le problème de minimisation L̃1(r) = infq λ0(q) pour les potentiels q de valeur moyenne zéro et de norme L1 égale à r . Le résultat est L̃1(r) = −r2/4. L’approche est une combinaison de méthode variationnelle et de procédé de limite, utilisant des résultats de continuité des solutions et des valeurs propres d’équations linéaires en les potentiels et les mesures dans des topologies faibles. Ces valeurs extrémales peuvent donner des estimations optimales sur les zéro-èmes valeurs propres de Neumann. © 2012 Elsevier Masson SAS. All rights reserved. MSC: primary 34L15; secondary 34L40, 49R05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimization of Eigenvalues of One-Dimensional p-Laplacian with Integrable Potentials

In this paper, we will use the variational method and limiting approach to solve the minimization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-Laplacian when the L1 norm of integrable potentials is given. Combining with the results for the corresponding maximization problems, we have obtained the explicit results for these eigenvalues.

متن کامل

MAXIMIZATION OF EIGENVALUES OF ONE-DIMENSIONAL p-LAPLACIAN WITH INTEGRABLE POTENTIALS

In this paper we will use variational methods and limiting approaches to give a complete solution to the maximization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-Laplacian with integrable potentials of fixed L 1-norm.

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

Quantized Neumann problem, separable potentials on S” and the Lam6 equation

The paper studies spectral theory of Schrodinger operators H= fi2A + V on the sphere from the standpoint of integrability and separation. Our goal is to uncover the fine structure of spec H, i.e., asymptotics of eigenvalues and spectral clusters, determine their relation to the underlying geometry and classical dynamics and apply this data to the inverse spectral problem on the sphere. The prot...

متن کامل

Spectrum of One-Dimensional p-Laplacian with an Indefinite Integrable Weight

Motivated by extremal problems of weighted Dirichlet or Neumann eigenvalues, we will establish two fundamental results on the dependence of weighted eigenvalues of the one-dimensional p-Laplacian on indefinite integrable weights. One is the continuous differentiability of eigenvalues in weights in the Lebesgue spaces L with the usual norms. Another is the continuity of eigenvalues in weights wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012